DroneCells: Improving 5G Spectral Efficiency using Drone-mounted Flying Base Stations
نویسندگان
چکیده
We study a cellular networking scenario, called DroneCells, where miniaturized base stations (BSs) are mounted on flying drones to serve mobile users. We propose that the drones never stop, and move continuously within the cell in a way that reduces the distance between the BS and the serving users, thus potentially improving the spectral efficiency of the network. By considering the practical mobility constraints of commercial drones, we design drone mobility algorithms to improve the spectral efficiency of DroneCells. As the optimal problem is NP-hard, we propose a range of practically realizable heuristics with varying complexity and performance. Simulations show that, using the existing consumer drones, the proposed algorithms can readily improve spectral efficiency by 34% and the 5-percentile packet throughput by 50% compared to the scenario, where drones hover over fixed locations. More significant gains can be expected with more agile drones in the future. A surprising outcome is that the drones need to fly only at minimal speeds to achieve these gains, avoiding any negative effect on drone battery lifetime. We further demonstrate that the optimal solution provides only modest improvements over the best heuristic algorithm, which employs Game Theory to make mobility decisions for drone BSs.
منابع مشابه
Fuzzy based efficient drone base stations (DBSs) placement in the 5G cellular network
Currently, cellular networks are one of the essential communication methods for people. Providing proper coverage for the users and also offering high-quality services to them are two of the most important issues of concern in cellular networks. The fifth-generation cellular communication networks can provide higher data transmission rates, which lead to a higher quality of service but this hig...
متن کاملPerformance of Mobile Networks with UAVs Can Flying Base Stations Substitute Ultra-Dense Small Cells?
A crucial challenge for future mobile networks is to enable wide range of scenarios and use cases for different devices spanning from simple sensors to advanced machines or users’ devices. Such requirements call for highly flexible and scalable radio access network (RAN). To provide high flexibility and scalability in dynamic scenarios, flying base stations (FlyBSs), i.e., base stations mounted...
متن کاملA Distributed Approach for Networked Flying Platform Association with Small Cells in 5G+ Networks
The densification of small-cell base stations in a 5G architecture is a promising approach to enhance the coverage area and facilitate the ever increasing capacity demand of end users. However, the bottleneck is an intelligent management of a backhaul/fronthaul network for these small-cell base stations. This involves efficient association and placement of the backhaul hubs that connects these ...
متن کاملEnergy and coverage efficiency trade-off in 5G small cell networks
When small cells are densely deployed in the fifth generation (5G) cellular networks, the base stations (BSs) switch-off strategy is an effective approach for saving energy consumption considering changes of traffic load. In general, the loss of coverage efficiency is an inevitable cost for cellular networks adopting BSs switch-off strategies. Based on the BSs switch-off strategy, an optimized ...
متن کاملOn the Road to Energy Efficient 5G Mobile Networks
The seamless and ubiquitous wireless communication anywhere, anytime, anyhow and between anybody and anything is expected to render daily lives easier. This will continue to grow, increasing at the same time, demand on wireless mobile connectivity between people, machines, processes and so on. There is an opinion that this will be achieved by invoking the fifth generation (5G) mobile networks. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1707.02041 شماره
صفحات -
تاریخ انتشار 2017